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Abstract 

Learning Bayesian network structure from 
large-scale data sets, without any expert-
specified ordering of variables, remains a dif-
ficult problem. We propose systematic im-
provements to automatically learn Bayesian 
network structure from data. First, we propose 
a linear parent search method to generate can-
didate graph. Second, we propose a formal ap-
proach to eliminate cycles using minimal like-
lihood loss, a short cycle first heuristic, and a 
cut-edge repairing. Third, we propose structure 
perturbation to assure the stability of the net-
work. This step also suggests a stability-
enhancement method to refine the network 
structure. The algorithms are easy to imple-
ment and efficient for large networks. Experi-
mental results on two data sets show that our 
new approach outperforms existing methods. 

1. Introduction 

The rapidly increasing quantity of data in many data 
mining fields allows a great opportunity to model and 
understand the complicated relationship among a large 
number of variables. Bayesian Networks (BNs) [18,5,1, 
11] provide a natural framework for this purpose 
[2,8,10,17,19,23,22,20]. For example, Murphy and 
Mian [17] used the dynamic BNs to infer genetic net-
works from time series data. Hartemink et al [10] pre-
sented an annotated edge method based on BNs to 
model regulatory networks. Sarkar and Boyer proposed 
Bayesian perceptual inference networks [22]. Peng et al 
used the BNs in morphology-function analysis of medi-
cal images [20]. Cheng applied BN  [2] to biomedical 
data feature extraction and classification which won a 
recent data mining contest (KDD Cup-2001). 

A Bayesian network [1,18,5,11] is a Directed 
Acyclic Graph (DAG) G = (V, E) that models the prob-
abilistic dependencies of a group of nodes, i.e.  
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where each node g stands for a variable, πg is the par-
ents of node g in G; the directed edges (or hyper-edges) 
among nodes encode the respective conditional prob-
abilistic distributions. The factorization property allows 

the joint distribution of the network be factorized as the 
product of conditional probabilities of every variable 
given its parents.  

A major difficulty is to identify BN structures 
from input data D directly. The problem is NP-hard [3], 
since the total number of possible graphs is exponential 
to n, the number of variables in the data [5,21]. Many 
heuristic search methods (for reviews see Heckerman 
[11] and Buntine [1]) have been proposed. A well-
known algorithm is K2 [5], which however assumes a 
predefined ordering of all nodes, thus is not suitable 
wherever there is little knowledge about variables' or-
dering. Many previous methods, e.g. Cheng's condi-
tional independence test based method [2], often have at 
least O(n4) complexity. Another drawback of many ex-
isting methods is that predefined thresholds are neces-
sary to terminate the BN search procedure (e.g. [19]). 
For many large applications, the number of variables is 
large, several hundreds at least. Thus an efficient algo-
rithm to identify BN structures is particularly important. 

Because of the difficulty in constructing BNs, an 
intuitive approach is to first draft candidate graphs and 
then eliminate possible cycles (e.g. [15,16,2]). For-
mally, a candidate graph is very similar to the depend-
ency graph [12]. Our work emphasizes more on the 
efficiency in constructing BNs and the quality measures 
of the learnt BNs. 

In this paper we propose a new O(n2) algorithm to 
infer locally stable Bayesian networks without requiring 
any predefined ordering of variables or predefined 
thresholds to terminate the model search. Our new algo-
rithm consists of three main steps. First, we develop an 
efficient algorithm to search for optimal parents of 
nodes to form a candidate graph, which includes impor-
tant gene regulations for every variable. We propose 
two improvements on the K2 algorithm to generate the 
candidate graph by searching for a minimum set of par-
ents for every node with a linear search heuristic to 
maximize the posterior. This method significantly re-
duces the complexity of the Bayesian learning. (See §3) 

Second, we propose a formal treatment for elimi-
nating possible cycles in the candidate graph that would 
violate the acyclic assumption of BNs. We propose a 
minimal likelihood loss criterion and a short cycle first 
heuristic that can be efficiently implemented. We also 
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design a heuristic to repair the DAG structure due to 
cycle elimination.  (See §4)  

Third, we propose a locally stable condition as a 
desirable feature of BN: any local change of edges will 
lower the posterior of the network. We design structural 
perturbation scheme to evaluate networks. We also pro-
pose algorithm to enhance the stability. (See §5) 

2. Bayesian Likelihood Score 

With the assumption of a uniform prior of G (for dis-
cussions on priors, see [11]), we use the logarithm pos-
terior (and likelihood) of G given the data D, 

ℓ(G) = logP(G|D) ∝ logP(D|G)  (2) 

as the metric to judge the optimality of a network struc-
ture. The likelihood P(D|G) can be calculated in the 
following [5]: 
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where n is the number of variables, or nodes; ri is the 
number of states of the ith variable; πi is the set of par-
ent nodes of the ith variable; qi is the the numbers of 
joint states of the nodes in πi; Nijk is the number of cases 
in which the ith variable assumes the kth state and the 
set πi assumes the jth joint state; and Nij = Σ ri 

k=1 Nijk. 
Other scores include Minimal Description Length 
(MDL) [1], BDe [11], etc.  

3. Candidate Graph 

The candidate graph Gc is a directed graph containing 
important associations of variables where the redun-
dancy of associations should be minimized. Our ap-
proach is to identify the optimal parent set for each 
node based on the Bayesian likelihood. Here our em-
phasis is on how to efficiently search for optimal parent 
set, π = {gi

*, i=1,…,m}. The locally optimal parent set is 
similar to dependency graph of Heckerman et al [12]; 
the difference is that they used regression to determine 
the dependency while we directly search based on the 
Bayesian score. 

Our algorithm improves upon the K2 search algo-
rithm [5]. K2 algorithm uses a simple incremental 
search strategy: it first searches for the best singleton 
parent g1

*, i.e., g1
* = argmaxi ℓ(gi→g), and ℓ(gi→g) > 

ℓ(g) + ℓ(gi). It then searches for the second parent ac-
cording to (a) g2

*= argmaxi ℓ(g1
*→g←gi) and (b) the 

new score is increased: ℓ(g1
*→g←gi) > ℓ(g1

*→g) + 
ℓ(gi). If the second parent cannot be found, then the 
search is terminated; otherwise, continue to search for 
the third parent, etc. K2 has a natural termination and 
does not need a threshold. 

We extend K2 in two directions. (i) We note that 
once a parent or parents are found, many of the rest of 
nodes are rendered conditionally independent of g. Thus 
in searching for second parent g2

*, we do not need to 
search through all the rest variables, Ω1={V \g1

*}; in-
stead we need only search  

Ω1
+ = {gi∈V, gi≠g1

*, ℓ(gi→g) > ℓ(gi) + ℓ(g)}.   (4) 

Note that Ω1
+ is obtained automatically when searching 

for g1
*. Similarly, when searching for g3

*, we need only 
search Ω2

+, instead of Ω2={V \{g1
*, g2

*}}; etc. This 
amounts to a large saving in computation.  

(ii) We systematically search a larger space than 
K2. In K2, g1

* corresponds to the largest ℓ(gi→g). De-
note the respective parent set as π(1). We can search 
another set of parents beginning with the second largest 
ℓ(gi→g), denoted as π(2). If π(2) leads to better score than 
π(1), then we take π(2) as the final parent set. We call this 
2-max search. This can be extended to k-max search. 
Clearly, the Bayesian score of π(k) increases monotoni-
cally with k, at the expense of linearly enlarged com-
plexity. 

We call this modified method the K2+ algorithm. 
It has the complexity O(αkmn), where α counts for the 
reduction using Ω1

+, Ω2
+,…, Ωm

+  instead of Ω1, Ω2 ,…, 
Ωm  (often Ωi

+ contains a much smaller number of vari-
ables than Ωi). Accordingly, the complexity to construct 
the whole candidate graph is O(n2), which is much less 
than that of many other popular methods, e.g. Cheng's 
O(n4) algorithm [2]. 

4. Cycle Elimination 

Since the candidate graph Gc is generated via local op-
timal search, it is possible that Gc contains many cycles 
that violate the basic acyclic assumption of BNs.  

A simple approach is to enumerate all possible 
DAGs that could emerge from Gc and select the one 
with the largest score. However, this method is imprac-
tical due to its exponential complexity. One earlier ap-
proach is to use a predefined ordering of all nodes to 
partially avoid this problem, as used in many BN learn-
ing algorithms [5,1,7]. Approximation methods based 
on random edge cut [16] have also been studied. A heu-
ristic decision-tree based approach has also been stud-
ied in [15]. It seems, however, that a formal study on 
cycle elimination is lacking so far. In this paper, we 
resolve this problem via graph algorithmic approach. 
This approach consists of three heuristics that can be 
implemented efficiently.  

Any cycle must lie in a Strongly Connected Com-
ponent (SCC) of the graph. An efficient O(n) algorithm 
based on depth-first search can  locate SCCs in a di-
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rected graph [6]. We first find all the SCCs in Gc, and 
eliminate cycles only within each SCC. 

4.1 Bayesian Likelihood Loss Function 

If a SCC contains one cycle, we can break one cycle at 
a time. We break cycles based on loss function. For 
each edge gi→gj, we define the loss as the reduction of 
Bayesian log-likelihood for gj due to the loss of one of 
its parents, 

w(gi→gj) = ℓ(gj | π) −  ℓ(gj | π \ gi).  (5) 

Note that w(gi→gj) ≠ w(gi←gj). Although mutual in-
formation might be another possible choice as the loss, 
it does not reflect the joint association between different 
parents and gj.  

If a SCC contains several cycles, sometimes they 
share one or more common edges, such as the cycles in 
Figure 1. For example, in Figure 1 (a) the edge g2→g3 is 
shared by the cycles C1231 (i.e. g1→g2→g3→g1) and 
C2342.  

There are several criteria to break the cycles. (i) 
We can simply cut edges with the smallest loss. (ii) We 
can identify the common edges and cut the one shared 
by most cycles. In Figure 1 (b), cutting the common 
edge g2→g3 will eliminate two cycles. (iii) The loss 
function criterion indicates there could be better 
choices. Suppose g1→g2 and g3→g4 are the edges with 
the minimal loss in cycles C1231 and C2342, respectively. 
If the condition 

  w(g1→g2) + w(g3→g4) < w(g2→g3)       (6) 

holds, then we break edges g1→g2 and g3→g4; other-
wise, we break the edge g2→g3. 

Figure 1 (b) illustrates a more complicated SCC 
with four 3-node cycles C2312, C2342, C2542, C2642. The 
edge g2→g3 is shared 2 times and the edge g4→g2 is 
shared 3 times. We start cycle elimination from the 
most-shared edge (i.e. g4→g2) and use a minimal-
likelihood-loss strategy similar to Eq.(6). If the edge 
g4→g2 is cut, then only C2312 remains and we will fur-
ther cut its minimal loss edge; otherwise we use Eq.(6) 
to decide which edge(s) in cycles C2312 and C2342 should 
be broken.  

This minimal-likelihood-loss criterion can be 
summarized as follows. If there is no nested cycle, for 
each cycle we break the edge with the minimal loss. 
When several cycles nest among themselves, we iden-
tify the edge eij shared by most cycles and compare its 
loss with the sum of the minimal loss edges in partici-
pating cycles; if breaking eij leads to less loss, we will 
cut eij; otherwise we cut the minimal loss edges in every 
participating cycle. 

 

 
 

(a) (b) (c) 
Figure 1. (a) A SCC with two 3-node cycles. (b) A SCC with 
four 3-node cycles. (c) A SCC with a 3-node cycle and a 4-
node cycle. Multiplicities of nodes are shown in parentheses. 

4.2 Short-Cycle-First Heuristic  

Although the minimal likelihood loss criterion is gener-
ally applicable, finding the set of edges with regarding 
to this criterion could become very complicated due to 
the existence of many cycles and the large number of 
common edges they share. Here we propose a short-
cycle-first heuristic to minimize the complexity (for 
both computation and implementation) of cycle elimi-
nation.  

In BNs, information propagates multiplicatively 
because of the probability calculation, thus along a 
fixed path of m edges, the influence of the starting node 
on the ending node is P1P2⋅⋅⋅Pm approximately. There-
fore, usually a long cycle violates the acyclic assump-
tion less severely than a short cycle. If a SCC contains 
cycles of different lengths, our short-cycle first heuristic 
breaks the 2-node cycle first, and the 3-node cycle sec-
ond, etc. In Figure 1 (c), we first break the 3-node cycle 
C2352. Afterwards, we break the cycle C12341 if it still 
exists.  

Short-cycle-first heuristic can be efficiently im-
plemented through a matrix multiplication method. Let 
A be the adjacency matrix of a SCC. Diagonal elements 
of A are zeros. We compute Am with the smallest m such 
that nonzero elements appear at matrix diagonal; with 
some elementary algebra [9], we can show that (i) 
nodes corresponding to nonzero diagonal elements in 
Am must involve in m-node cycles; thus finding these 
cycles are restricted to the subgraph induced by these 
nodes; (ii) the multiplicity of node i (i.e. value of (Am)ii) 
equals the number of times a cycle pass through node i 
(for example, in Figure 1 (a) and (b) the multiplicity of 
nodes are indicated by red numbers in parentheses). (iii) 
Starting from the node with the highest multiplicity 
using breadth-first-search algorithm, restricting on the 
subgraph, we can easily traverse all m-node cycles and 
identify the most-shared edges. For example, in Figure 
1 (b), we can start from g2 and quickly identify the 
most-shared edge e42. We use the criterion in §4.1 to 
break cycles. Note that A is usually very sparse and the 
sparse matrix multiplications often involve much less 
computation than dense matrixes.  

The short-cycle-first heuristic allows us to solve 
much simpler cycle elimination problems, with the 
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minimal loss criterion. Once one or more edges are cut, 
we re-run the SCC-detection algorithm to identify the 
new (probably smaller) SCCs and the matrix multiplica-
tion method to identify all remaining cycles. This is 
repeated until all cycles are eliminated. Eventually this 
procedure returns a DAG G. 

4.3 Repair of Local Structures 

Once an edge gi→gj in the candidate graph Gc is cut, 
there is a loss of the likelihood of ℓ(gj|πj) because now 
gj's parent set πj  is less optimal. Hence, we must repair 
the parent set of each node whose incident edges have 
been cut. K2+ parent-search is used to find the optimal 
parent set. The repair is done locally, i.e., all other par-
ents of gj are retained during the repair of πj. In addi-
tion, the repair is subject to the acyclic condition, i.e. 
the best replacement edge cannot cause cycles.  

Suppose in cycle elimination, M edges are cut and 
the local structures of the involved nodes need repair. 
The sequential order in repairing local structures is im-
portant, because the first-repaired local structures will 
give extra-constraints on the space of the later-repaired 
local structures due to the acyclic condition (i.e. poten-
tially the search-space of the later-repaired local struc-
tures would be shrunk). Our algorithm proceeds as the 
following. 

By comparing the candidate graph Gc and the 
DAG G returned from cycle elimination, we first locate 
the nodes whose local structures need repair. We calcu-
late the likelihood loss of a node due to the cutting of 
incident edges. We sort these loss values from large to 
small, and repair the nodes according to this ordering. 
This maximal-loss-first heuristic is consistent with the 
minimal-likelihood-loss criterion. Clearly, during the 
course of repair, the DAG after each local repair will 
always have a higher likelihood score than the DAG 
before this local repair. This repair algorithm has the 
complexity of O(βn), where β is the number of nodes 
whose parent-sets are repaired.  

For simplicity, we call the whole paradigm (in-
cluding the minimal likelihood loss criterion, short-
cycle-first heuristic, and repair) the BreakCycle algo-
rithm. In practice, its complexity is much less than 
O(n2). 

5. Network Structure Perturbations 

To assess the quality of the obtained network, we per-
form local structural perturbations to assess the local 
stability of the obtained network G. Suppose we perturb 
G into a new structure Ĝ. Let the log-odds-ratio be  

)|(
)ˆ|(log)()ˆ(

GDP
GDPGG =−=∆ lll .  (7)  

We say G is locally stable if ∆ℓ < 0. We consider the 
following two types of local perturbations. 

5.1 Edge Perturbation 

Here we attempt to perturb the edge eij = gi→gj to see if 
the Bayesian likelihood score is improved. If the score 
is improved, than the edge is "unstable". A "brute force" 
perturbation is to simply cut eij and compute the log-
odds-ratio of Eq.(7). However, after eij is cut, gj's par-
ent-set is no longer optimal. Thus this brute force per-
turbation will usually render an edge stable. For this 
reason, we do a soft perturbation. We use the K2+ algo-
rithm to find the new optimal parents for g2, excluding 
the cut edge (but keeping all other parents if any). We 
calculate ∆ℓe

EP ("EP" stands for Edge Perturbation) and 
the percentage of stable edges   

)(||
1 EP

eEeE
EPr l∆Σ=

∈
δ ,   (8) 

where δ(x) = 1 if x ≤ 0 and 0 otherwise. rEP is an indica-
tor of the local stability of G. A stable G should have 
rEP ~ 1.  

Note that EP is a local stability test because it pro-
duces a new locally optimal structure for comparison. 
The more negative ∆ℓe

EP, the more "stable" the edge e 
is.  

5.2 Improving Edge Stability 

By perturbation, we can identify those unstable edges 
whose replacements lead to better likelihood scores. 
This suggests that we may improve the likelihood of the 
whole network by substituting these unstable edges 
with their replacements, subject to the constraint that no 
cycles appear after replacements. 

The edge-stability-improvement algorithm first 
sorts the ∆ℓe

EP of all unstable edges. Similar to the re-
pair algorithm in §4.3, it then goes through all unstable 
edges following the sorted ordering (starting with the 
most unstable edge). For a given unstable edge e, the 
optimal replacement found in EP is first tried to see if 
there is cycle caused; if no, then the optimal replace-
ment is used; otherwise the K2+ search algorithm is 
invoked to search the best replacement (similar to §4.3, 
the search is subject to the acyclic condition, and all 
other parents of the current node are retained.).  

By applying the edge-stability-improvement algo-
rithm, the Bayesian likelihood score of G is improved 
while the number of unstable edges is reduced.  

Note that our goal is to detect and repair unstable 
edges to improve a single structure. This differs from 
other edge quality assessments, e.g. averaging over a 
large number of structures [19], where the edge impor-
tance is not associated with a particular structure.  
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6. Summary of Our Approach 

As a brief summary, we outline the major paradigm of 
our learning algorithm of Bayesian networks as follows.  

(1) Use K2+ algorithm to generate the candidate graph. 

(2) Use BreakCycle algorithm to generate DAG from 
the candidate graph, and repair the local structures 
to make the DAG locally optimal. 

(3) Use structural perturbation EP to assess the local 
stability of the learnt BN, and improve the stability 
with the algorithm in §5.2.  

7. Experiments 

7.1 Data  

We use two data sets in this paper. The first is the well-
known Alarm data set [5], which consists of 37 vari-
ables and 10000 samples. There is an intrinsic ordering 
of these variables, which however is not used in our 
experiments since our major concern is how to model 
the data without the ordering information. We use the 
Alarm data accompanying the PowerConstructor pack-
age [2]. We compare our results with WinMine [4,15] 
developed by Microsoft, because it can generate DAGs 
without ordering of variables. 

The second data set is the Rosetta Inpharmatics 
Compendium [14], which is a genome data set of yeast. 
The data have 481 real-valued gene variables with 300 
data points (experiment conditions). The original real-
valued variables are discretized to 3-states via thresh-
olding at µ±0.4σ (σ -- standard deviation, µ -- mean). 
These states correspond to the over-expression, base-
line, and under-expression of genes.  

We use Cross Validation (CV) to evaluate the 
generalization strength of learnt BNs. We use 10-fold 
CV. 

One metric for CV is the cross-validated likeli-
hood of the testing data computed from the learnt BN 
where the parameters (i.e. conditional probability ta-
bles) are estimated from the training data. The follow-
ing normalized logarithm likelihood LCV is used: 

)|(log
10

1
1 GgpL

sDgsnNCV ∈=
ΣΣ= ,  (9) 

where Ds is the sth-fold test set. Clearly, the larger LCV, 
the better the BN characterizes the data. Hence, LCV 
evaluates how well the learnt BNs generalize to unseen 
data. The normalized data likelihood L for learning is 
similarly computed, which is also used in [15]. 

7.2 Results on Alarm Data Set  

The results on the Alarm data set are shown in Table 1. 
Results of our algorithms, WinMine, and ordering-
space-search, are shown, together with those computed 
from the known true Alarm structure and the null model 
(i.e. without interconnecting edges). The k-max search 
in K2+ clearly improve the quality of the learnt BNs as 
seen from the improvements of quality-measures ℓ, L, 
LCV and rEP of the 3-max search results as compared 
with the 1-max (K2) search results. The edge stability 
algorithm of §5.2 clearly improves all the ℓ, L, LCV, and 
rEP. rEP becomes 1 afterwards.  

Compared to true model results, our best results 
(i.e. 3-max with improved stability) are very close. Re-
member that the ordering of variables is assumed un-
known, thus it is highly unlikely the true structure can 
be recovered from data. Hence, these results indicate 
our network can model the data almost equivalent to the 
true model, with a different network structure (57 edges 
in our model versus 46 edges in the true model). 

We run WinMine using three different κ values, 
0.01 (default value), 0.002, and 8e-12, to adjust the 
network to have the same number of edges as our re-
sults or as the true model. For the first two κ values, we 
obtained BNs with 57 edges, among which 55 are the 
same; the quality metrics of both structures are the 
same, but are not as good as our results. In the last case 
the BN has 46 edges, the same as the true model, how-
ever it has much worse performances than our models.  

If an ordering of variables is known, we can run 
K2 to efficiently compute the structure. When no order-
ing information is known, one may generate a random 
ordering and compute the structure. One can generate 
many random orderings to search for best structure [7]. 
We perform this ordering-space-search experiment for 
100 random trials. Both the mean and best results are 
listed in Table 1. They are substantially worse than both 
our and WinMine's results. This indicates that it is hard 
to generate network with good quality from random 
orderings of variables, even at great computation ex-
pense.  

We compare the BN structure obtained using our 
algorithm with that obtained using WinMine, and also 
the true model (although due to the theory of equivalent 
graphs [11], this direct comparison is not necessarily 
the best comparison). For example, our BN and that of 
WinMine both have 57 directed edges, among which 39 
are the same. The number of overlapping edges of our 
result and the true model is 31, while that of WinMine 
and the true model is 22.  
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Overall, the true model has the best quality meas-
ures. This is of course expected. Our resultant networks 
have close performance to the true model, which are 
clearly better than WinMine and the ordering-space-
search method. The null model performs considerably 
worse in all measures. 

7.3 Results on Yeast Gene Expression Data Set  

Table 2 compares the results on the yeast gene data. In 
both our BNs and WinMine's results, there are more 
than 1600 edges for the 481 nodes.  

For learning, Table 2 shows that k-max search in 

K2+ improves ℓ, L, rEP of learnt BNs. Applying the 
edge-stability-improvement algorithm leads to steady 
improvements in all quality-measures.  

We also run WinMine for a variety of parameter κ. 
The best results are obtained by setting κ to its maximal 
value, i.e. 1.0. Table 2 shows that in the best case, 
WinMine results are worse than that of 3-max, i. e. 
smaller training score ℓ, smaller edge stability rate rEP, 
and less generalization strength LCV. It is interesting to 
see that the training likelihood L of WinMine result is 
higher than that of 3-max, however LCV of WinMine is 
lower than that of 3-max; this implies that the best net-

Table 1. Results on the Alarm data set. (ℓ, L, LCV are all normalized by nN; κ is the WinMine parameter controlling 
the complexity of network structure.)  
 

Learning (all data) CV (10-fold) Method Parent 
Search Method ℓ L rEP |E| LCV 

1-max -0.2587 -0.2543 0.9123 57 -0.2554 Our method 
(Before improving stability) 3-max -0.2581 -0.2539 0.9298 56 -0.2550 

1-max -0.2566 -0.2522 1.0000 56 -0.2533 Our method 
(After improving stability) 3-max -0.2562 -0.2519 1.0000 57 -0.2530 

True Model -0.2555 -0.2517 0.9783 46 -0.2526 
κ = 0.01 
(Default) -0.2593 -0.2551 1.0000 57 -0.2561 

κ = 0.002 -0.2593 -0.2551 1.0000 57 -0.2561 
WinMine 

κ = 8e-12 -0.2655 -0.2622 0.9783 46 -0.2630 
Best results -0.2633 -0.2578 0.8730 63 -0.2592 Search of Ordering Space 

(100 trials) Mean results -0.2701 
±0.0026 

-0.2631 
±0.0023 

0.8765 
±0.0521 

74.0 
±5.4 

-0.2650 
±0.0023 

Null Model -0.5822 -0.5813 --- 0 -0.5815 
 

Table 2. Results on the Yeast gene expression data. n is the number of iterations in stability enhancement. 
 

Search Method 
and Parameters Learning (All Data) CV (10-fold) 

k-max n ℓ L rEP |E| T (min) LCV 
0 -0.9770 -0.8269 0.6222 1326     9 -0.9420 
1 -0.9691 -0.7831 0.8451 1517 +44 -0.9303 
2 -0.9662 -0.7687 0.9426 1586 +25 -0.9255 
3 -0.9654 -0.7640 0.9863 1611 +  8.7 -0.9242 

1-max 

4 -0.9651 -0.7627 0.9951 1620 +  1.8 -0.9237 
0 -0.9710 -0.8019 0.7077 1433   16 -0.9338 
1 -0.9654 -0.7689 0.8901 1583 +40 -0.9250 
2 -0.9639 -0.7624 0.9579 1614 +27 -0.9226 
3 -0.9635 -0.7612 0.9821 1620 +14 -0.9220 
4 -0.9634 -0.7606 0.9889 1624 +  6.2 -0.9218 

O
ur

 M
et

ho
d 

3-max 

5 -0.9631 -0.7588 0.9957 1634 +  0.09 -0.9212 
κ ℓ L rEP |E| T (min) LCV 

0.01 (Default) -1.0218 -0.9918 0.2868 272 57 -1.0063 
0.50 -0.9916 -0.9373 0.4944 627 115 -0.9683 
0.99 -0.9644 -0.7744 0.9064 1528 229 -0.9239 
0.999 -0.9638 -0.7591 0.9468 1616 235 -0.9224 W

in
M

in
e 

1.00 -0.9636 -0.7554 0.9494 1641 268 -0.9220 
Null Model -1.1079 -1.0918 --- 0 0 -1.0987 
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work of WinMine might overfit data slightly.    

Table 2 also lists the time (on PIII 1G CPU) of 
each method. A plus "+" in our results means the time 
spent for the current step for edge stability improve-
ment. (Our algorithms were implemented in Matlab and 
C++, while WinMine was implemented in C++). Our 
method uses less than 16 minutes to generate an initial 
BN, and 1 hour or so to refine the network structure. In 
contrast, WinMine takes about 4 hours to generate a 
network with the similar performance. These timing 
results show that our methods are much faster than 
WinMine, due to our algorithm's O(n2) computational 
complexity. 

Many of regulatory relationships with high stabil-
ity obtained in the networks can be confirmed by the 
biological literatures. We extract sub-networks involv-
ing well-studied genes. We find these genes often have 
closely related biological functions. These biologically 
plausible regulatory relationships and sub-networks 
indicate the strength of our new methods. Table 4 
briefly lists several highly stable regulatory relation-

ships we have obtained, which are also supported by 
biological findings. An arrow between two genes, 
gi→gj, implies gi likely regulates gj. From public-
domain yeast-gene databases, e.g. the Saccharomyces 
Genome Database (SGD) at Stanford University [13], 
the biological significance of the associations can be 
easily confirmed. For example, in our results the gene 
ARG1 regulates the gene ARG5. Biologically, they are 
both related to arginine biosynthesis [13].  

8. Discussions and Conclusion 

A characteristic of the networks in our results is that 
they are rather sparse, which partially explains the high 
local stability of the obtained structures regarding to the 
perturbations. This also implies that some weaker or 
higher order associations could be missed in our 
method. One way to capture those associations is to let 
K2+ parent-search algorithm generate denser candidate 
graph, by relaxing the conditional independence re-
quirement and/or expanding the search to generate large 
parent sets. 

Currently, our cycle elimination algorithm deter-
ministically returns a DAG given a candidate graph 
based on the least likelihood loss criterion. One could 
also introduce randomization so that the algorithm re-
turns a number of structures that can facilitate model 
averaging.  

In this paper, we use local structural perturbations 
to systematically assess the roles of individual edges in 
the network. Based on them, one could build larger 
subnet-level perturbations using clustering, seed grow-
ing, etc. This could help to detect sub-structures of 
Bayesian networks.  

We use structural perturbation to define edge im-
portance and cross validation for quality assessment. 
Note that there is possibility of overfitting the underly-
ing data distribution. The cross-validation method pro-
vides means to see if the model overfits the data. Our 
structural perturbations provide potentially useful as-
sessment of this issue. As shown in the experiments, 
stable networks against structural perturbations are not 
likely to be overfitted.  

Another method is the Bayesian model averaging 
[8,19] that produces confidence scores for individual 
edges by averaging over high scoring structures. When 
the number of observations is small compared to the 
number of variables, there is concern that the data is 
insufficient to distinguish among high scoring struc-
tures with confidence. This question could be probed by 
techniques like our methods, model averaging, etc. 

In summary, we propose improved techniques for 
efficiently learning BN for large number of variables. 

Table 4. Examples of stable associations in our results; their bio-
logical plausibility are indicated by the summaries in the SGD at 
Stanford University.  
 

Associations Biological significance 

ADE1 → ADE2 
ADE1 is a phosphoribosylaminoimidazole-
succinocarboxamide synthase while ADE2 is a 
phosphoribosylaminoimidazole carboxylase.  

ARG1 → ARG5 
Both genes are related to arginine biosynthesis. 
ARG1 is an argininosuccinate synthase while 
ARG5 is an ornithine carbamoyltransferase.  

ERG3 → ERG25 
ERG3 is a  C-5 sterol desaturase; ERG25 is a C-4 
methyl sterol oxidase; both are related to ergos-
terol biosynthesis. 

HXK1 → GPH1 
HXK1 is a hexokinase related to fructose me-
tabolism and glycolysis while GPH1 is a glycine 
amidinotransferase. 

HXT6 → HXT7 
Both genes are fructose transporter, glucose 
transporter, and   mannose transporter that are 
related to hexose transport. 

IDH2 → IDH1 

Both genes are related to glutamate biosynthesis, 
isocitrate metabolism, and tricarboxylic acid 
cycle. Both are isocitrate dehydrogenases 
(NAD+). 

IDH2 → ACO1 
IDH2 is a isocitrate dehydrogenase and ACO1 is 
an aconitate hydrataseand. Both are related to 
glutamate biosynthesis. 

MET16 → MET10 

Both genes are related to methionine metabolism 
and sulfate assimilation. MET10 is a sulfite 
reductase (NADPH) while MET16 is a phos-
phoadenylyl-sulfate reductase (thioredoxin). 

RNR2 → RNR4 Both are ribonucleoside-diphosphate reductases 
that are related to DNA replication. 

SIT1 → FET3 

FET3 is a multicopper ferroxidase iron transport 
mediator; SIT1 is a siderochrome-iron (ferriox-
amine) uptake transporter. Both are related to 
iron transport. 

YPS6 → YPS5 Both are aspartic-type endopeptidases that are 
related to cell wall (sensu Fungi). 
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We expand the Bayesian network search space while 
reducing search for less likely space due to conditional 
independence. This constructs locally optimal parent-set 
for each node to form the candidate graph. A systematic 
approach based on minimal-likelihood-loss is used to 
eliminate the cycles in the candidate graphs, which is 
efficiently implemented using a short-cycle-first heuris-
tic. The maximal-loss-first heuristic is used to repair the 
local structures to assure the local optimality of the 
DAG. Edge perturbation is proposed to evaluate the 
local stability of the network. Unstable edges are re-
placed, leading to more stable network. Cross-
validation is used to assess the generalization strength 
of the network. Based on experiments on Alarm data 
and a genomic data set, the quality of the networks 
learnt is better than those of WinMine and ordering-
space-search, while the speed is improved significantly. 
The associations learnt from the genomic data are in 
good agreement with the earlier findings of biological 
literature. 
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